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I. INTRODUCTION  

 
 Considerable progress was recently made in understanding the rich and varied 
vortex phase behavior of high-Tc superconductors. The important role played by thermal 
fluctuations near Tc enriches the vortex phase diagram with a novel vortex liquid state. The 
liquid and solid phases are separated by the melting line Tm(H ) on which the thermal 
energy is strongly reduced compared to that on the mean-field line Tc2(H ). The melting 
line Tm(H) appears to be the 1st  order phase boundary located far below Tc2(H) exactly 
as it was predicted for the thermal fluctuations in two dimensions (D = 2) [1].  
 Recent experiments on the clean crystals of Bi2Sr2CaCu2O8 (BSCCO) and 
YBa2Cu3O7-δ (YBCO) proved that the transition at the low-field branch of the Tm-line is 
indeed of 1st order [2-6]. Magnetization of a clean superconductor undergoes a jump at 
crossing the melting line. This was first demonstrated in BSCCO in which the melting line 
was traced by the (H,T)-location of the jump in the local magnetic induction [2]. In 
YBCO, the δ-spikes observed in specific heat  cH(T)=δ(T-Tm ) leave no doubts [5] that 
the internal energy and entropy, associated with the vortex matter, changes discontinuously 
between the delineated aggregate states. The jumps in entropy ∆S  and in magnetization 
∆M are linked via Clapeyron-Clausius relation [6]: 
 

∆S = - µ0∆M (dH m /dTm)             (1) 
 
 The evidences of jumps ∆S and ∆M are of fundamental importance for 
understanding the nature of the phase transition. In the liquid state, the entropy of vortex 
disordering is added to the entropy of vortex solid, however, a major contribution to ∆S  
near Tc  comes from additional degrees of freedom related to divergence of penetration 
depth at T → Tc [7,8]. The sign of ∆M  is that of densifying vortex matter at melting alike 
to the melting of ice into water. Most likely, the flux density increases at melting because 
the intervortex repulsion become screened with the addition of thermally excited 
vorticity[9].  On the other hand, for a high-fields branch of melting line ∆S = 0.  
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The transition in high-fields should be continuous as predicted in glass model [10] because 
the glassiness is favored by increasing vortex entanglement with increasing either disorder 
or anisotropy, which are both dual of rescaling the magnetic field. Therefore, the order of 
melting transition changes with increasing field. The line of 1st order transition terminates 
at a critical point (CP) to give a way to the line of the 2nd order transition [11,12].  
 In this paper, we observed the jumps ∆M in YBCO single crystals along the melting 
line on two sides of the CP. Concomitantly to the jumps, the λ−peaks appear in 
magnetization. Contrarily to the expectation (Eq.1), the jumps do not vanish above the CP, 
but show an apparent increase in magnitude. In lieu of narrow jumps, the magnetization 
shows the broad σ-like anomalies at crossing the melting line above CP. The transition 
widths differ by ~50 times between the λ-like 1st order and the σ-like 2nd order transitions. 
We investigate the irreversibility in a very close vicinity of the transition and show that the 
sharp transition below the CP exhibits the combined features for the 1st and 2nd order 
transitions. The admixture of the 2nd order character is related to the transient temporal 
behavior of magnetization. On the other hand, the purely 2nd order transition above the CP 
is of entirely different nature. Another phase transition line Hpeak(T ), originating from 
the CP, goes inward the vortex solid and separates two solid phases which melts in the 
different ways. The location of the CP in the (H,T )-plane varies dramatically with 
slightly reducing oxygen content in YBCO crystals.  The increase in δ up to optimal 
doping suppresses the CP down to zero-field. Therefore, the vortex solid in highly 
oxygenated YBCO melts abruptly within narrow temperature range, while the vortex solid 
in optimally doped YBCO melts continuously showing the broad σ-like curves M vs.T. 
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Fig.1. Magnetization µ0M  vs. T 
for two different oxygen 
contents in the untwinned 
sample of YBa2Cu3O7-δ  
measured in the field-cooled 
mode at warming (FCW) in the 
field of 7T . The jumps at Tm 
mark the transition for two 
doping levels in the same sample. 
According to Eq.1, only from the 
jump in the overdoped sample 
the vortex disordering entropy is 
within 1k B . 

 Figure 1 displays the bold manifestation of this result as measured with SQUID 
magnetometer in a 41-mg high-quality untwinned crystal of YBCO with dimensions 6 x 
1.4 x 0.9 mm (LaxLbxLc). The details of measurements and sample preparation are 
given elsewhere [13,14]. The oxygen content in the sample was varied between “O6.86” 
(optimally doped) and “O7”(overdoped). The value of δ was ascribed to the sample 
according to the annealing temperature using the scale of Lindemer et al [15]. The data 
presented in the Sections I, II, III, V and VI were obtained for the field parallel to the c-
axis. In Sec. VII, the magnetization discontinuities for the in-plane orientations of the field 
are studied. In Sec. II, we show the singularities in magnetization shaped as the inverse λ-
peaks and discuss the interpretations of these features. We then turn to the magnetization 
observed at stepping the magnetic field in Sec.III. The theoretical expectations for the (T, 
H)-dependence of magnetization jumps are reviewed in Sec.IV and the attempts to 
describe them beyond the common models are sketched in Sec.VI. In Sec. V., the data  for 
varying the oxygen deficiency δ are presented. In Sec. VIII, we look at some experimental 
artifacts. Sections IX and X present the discussion and the conclusions of the paper. 



II. INVERSE λ-PEAKS OF MAGNETIZATION vs. TEMPERATURE  
 

The first order transition implies that the temperatures of melting Tm and freezing 
Tf do not coincide. We have observed that the difference ∆Tmf =Tm-Tf indeed occurs 
clearly at crossing the low-field branch of the melting line. However, the non-zero quantity 
∆Tmf is not the only manifestation of the irreversibility observed near the 1st order 
transition. The way by which the vortex state near the transition is obtained reveals itself in 
a few additional features of magnetization. Figure 2 shows the transition registered in a 
fully oxygenated YBCO crystal in a field cool cooling mode (FCC) in 7 Tesla. Contrarily 
to the FCW-magnetization of Fig.1, the FCC-magnetization shows a dip just below Tf . 
Subtraction of a smooth reversible magnetization Ms fitted for 2K above Tf  leads to the 
reduced magnetization M-Ms shaped as an inverse λ-peak. The excess of negative 
magnetization in the FCC mode characterizes the vortex state resulting from the freezing 
of the vortex liquid at Tf ≈ 77.3 K. 

 
 

Because the λ-peak is inverted, the 
freezing transition appears to induce the 
ejection of magnetic flux from the sample. 
The low-temperature shoulder of the λ-
shaped magnetization would then 
indicate that a portion of magnetic flux 
reenters the sample as the temperature 
sweeps further below Tf. We have also 
tested this behavior in a different 
experiment, when the temperature sweep 
was stopped at T below Tm. The excess of 
negative magnetization was observed to 
relax with time at constant temperature. 
A recent interpretation of magnetization 
and entropy jumps [6], assumes that the 
melting/freezing transition occurs 
homogeneously only in a sample of an 
ellipsoidal shape. In this case, the 
intermediate state can be formed in which 
the solid fraction decreases gradually via 
melting.   

 On the other hand, the melting/freezing is not homogeneous in a rectangular sample. 
In this case, the intermediate state in one region of a sample coexists with the solid or 
liquid phases. The spatially localized phase boundary corresponds to a sheet of circular 
current flowing along the solid/liquid interface. A dip similar to that shown in Fig.2 
appears already in the standard expression for the local density of magnetic flux near the 
current sheet in a long slab [6]. In the global magnetization, a dip was numerically 
observed as well. More complex structure involves a few oscillations of magnetization 
associated with the intermediate state within a few percent of H  near the dip [6]. c1

 The inhomogeneity of the vortex states in a real sample leads to the transient 
behavior reminiscent of 2nd order transition. In the case of rapid quenching, the system 
could be governed by a kinetic temperature, similar to that in 2nd order transition [16].  
Observed in our experiment relaxation of the excess of the negative magnetization at 
constant T suggest a dissipation of the currents related to the interphase boundaries and 
topological defects.  The relaxation is slowing down at freezing because the droplets of 
liquid phase can be trapped inside the solid phase. The nucleation of the vortex solid is 



associated with enlarging a new order parameter (Φ-order [17]).  During the growth of the 
nucleons, the orientation of the order parameter remains random in each nucleon. As the 
nucleons get in contact with each other, a tangle of singularities is formed similarly to the 
formation of vortices in 3He [18,19]. Just below the transition the self-seeking character of 
the defect walks abruptly increases, so that the temperature dependence of the walk step 
shaped as an inverse λ-peak [20]. The dissipation of the interphase currents could be thus 
viewed as an annihilation of “matter and antimatter”. The amplitude of the distribution of 
topological defects likewise exhibits an inverse λ-peak just below the transition [20].  
 

 

 

Fig.3. FCC magnetization 
measured in fields of 3, 4 
and 5 Tesla with cooling 
rates of 0.05 K/min and 
0.15 K/min and FCW 
magnetization measured at 
0.15 K/min in a fully 
oxygenated YBCO single 
crystal. Note the 
temperature difference of 
0.2K between melting and 
freezing. The temperatures 
Tm and Tf are not affected 
by the cooling/warming 
rate. 
 
 
 
Fig.4. Temperature 
derivative µ

0
dM/dT of the 

slow field cool cooling       
(FCC, rate ~ 0.05 K/min) 
magnetization data of Fig.3. 
In the field of 5 Tesla, the 
freezing transition occurs 
over a width of 0.05 K. The 
transition width and the 
asymmetry of the inverse 
λ-peak increases with 
decreasing field. 

 
 Figure 3 shows that the inverse λ−peak shifts when the temperature sweep direction 
is reversed. The exact location of the upturn in the head of the inverse λ-peak depends also 
on the cooling rate. However, for increasing temperature all the sweeping rates in the range 
from 0.05 K/min to 2K/min gave the coinciding high-temperature shoulder of the 
inverse λ−peak. The inflection point where this shoulder adjoins the line of reversible 
magnetization is denoted as Tm. For decreasing temperature, all the sweeping rates gave 
another location of the high-temperature shoulder of the inverse λ−peak, which adjoins the 
line of reversible magnetization at Tf as shown in Fig.3. In the FCW-magnetization, the 



inverse λ-peak shown in Fig.3 is an additional feature, which is not seen in Fig.1. It should 
be emphasized that this feature is observed only for the low-field branch of the melting line 
located below the CP. With a significant decrease of the oxygen content in the sample the 
CP goes to zero-field. This is the reason why this feature is not seen in the optimally doped 
sample of  Fig. 1. On the other hand, this feature is present but not resolved for the 
overdoped sample of Fig.1.  
 The amplitude of the inverse λ-peaks for the FCW magnetization is systematically 
smaller than that for the FCC magnetization. With increasing field from 5T (Fig.3) to 7T 
(Fig.1) the FCW λ−peak  becomes much tinier than the FCC-λ−peak. The ratio between 
these amplitudes is also sensitive to small variations in the oxygen content and the 
orientation of the sample. Figure 5 shows the FCW data of Fig.1 altogether with the FCC 
data measured in the same run. The physical picture of the 2nd order transition suggested 
above accounts for the difference between FCC and FCW magnetizations near Tm (Tf). 
In contrast, this difference cannot be explained by pinning. Figure 5 shows how we discern 
the ordinary pinning from the 2nd order transient behavior described above. The pinning is 
assessed by measuring the zero-field cooled (ZFCW) and reduced field warming (RFW) 
magnetizations. In the ZFCW procedure, the magnetic field is applied at low temperature 
where the critical current Jc is large, so that the Bean profile [21] is formed in the sample 
prior to the measurement. The RFW thermomagnetic protocol involves a precooling of 
sample in a field larger than the measurement field. An inverted Bean profile is formed 
when the field is reduced at low temperature. 
 

 

Fig.5. FCW and FCC magnetizations in the 
field of 7 T for two oxygen contents in the 
untwinned sample of YBa2Cu3O7−δ The FCW 
data correspond to Fig.1. Also shown are the 
zero-field-cooling (ZFCW) data and the data 
obtained at warming sample in the field 
reduced (RFW) to 7T after cooling in a 
slightly larger field (~7.2T, obtained in the 
hysteresis mode of field setting into the 
SQUID magnet). In the optimally doped 
sample, the divergence between RFW and 
ZFCW data evidences an inversion of the 
Bean profile that is indicative of pinning 
(J

c
>0). All the magnetizations obtained at 

warming in the overdoped sample (ZFCW, 
FCW, RFW) coincide far from T

m
. This is in 

striking contrast in this sample with the FCC 
data showing the inverse λ−peak just below 
Tm. 

 Both RFW and ZFCW measurements are conducted at slow warming the sample. 
The straight and the inverted Bean profiles are steep at low temperatures, however, become 
shallower as the temperature approaches to Tm. In the optimally doped sample, the pinning 
persist right up till the σ-like anomaly, as indicated by the divergence of the ZFCW and 
RCW magnetizations. In the overdoped sample, the ZFCW and RFW magnetizations 
exactly coincide far below the transition. On the other hand, the splitting between the FCC 
and FCW magnetization branches near Tm occurs only in the overdoped sample. In the 
optimally doped sample, the fully coinciding FCC and FCW curves show no any mark of 
the inverse λ-peak. The transient phenomena mentioned above are not relevant to the 
purely 2nd order transition in the optimally doped sample. The freezing transition in the 



optimally doped sample is instantly ensued by the onset of pinning just near the transition, 
it appears that the pinning suppress the vortex state, associated with the inverse λ-peak.  
 Figure 6 shows the magnetization measured in the overdoped sample for a number 
of fields Happ for temperature sweeps up (ZFCW, RFW) and down (FCC). The 
cooling/warming rate is larger than that in Fig.3. As in Fig.5, the ZFCW and RFW data in 
7T fully coincide both above and below the transition, showing that the pinning is 
negligible in this field. As the field decreases, a divergence between the cooling data 
(FCC) and warming data (ZFCW, RFW) start to appear below the transition. On the other 
hand, in the immediate vicinity of transition, this discrepancy decreases. In the field of 3T, 
the magnitude of the inverse λ-peak is nearly the same in the cooling and warming data. 
Starting from the field of 3T, a difference between ZFCW data and RFW data is seen right 
up to the transition. In the field of 2T, the jump in ZFCW magnetization exceeds twice the 
jump in FCC magnetization, while the latter is yet twice larger than the jump in RFW 
magnetization. Clearly, the pinning in this field is robust right up to the transition. 
 
 
Fig.6. The µ0M vs. T curves 
in fields Happ of 1, 2, 3, 4, 5, 
6 and 7 Tesla obtained 
according to three 
thermomagnetic protocols: 
ZFCW, FCC, and RFW. 
The thick arrows on the 
curves indicate increasing 
T for ZFCW and RFW 
modes and decreasing T for 
FCC mode. All the curves 
are coinciding above the 
onset of fully reversible 
state at Tfluid indicated for 
each value of  H

app
.  

 It was noted above that pinning suppress the transient vortex state associated with 
the inverse λ-peak. This was evident in the optimally doped sample. It follows from the 
Fig.6 that a similar suppression of the transient vortex state occurs in the overdoped sample 
for the low-field regime only. From Fig.7 it is also clear how the pinning affects the FC-
magnetization. Both the FCC and FCW branches of FC magnetization in the low-field 
regime are shown in Fig.7. The slope of the FCC magnetization below the jump is smaller 
than the slope of reversible magnetization. As the temperature decreases, the pinning sets 
in below the jump. The Bean profile is gradually formed and the gradient of flux density 
increases with decreasing temperature. From thermodynamical reasoning for Jc=0 one 
expects the FCC magnetization below the jump closely following the slope of reversible 
magnetization. However, Jc increases continuously with decreasing temperature thereby 
reducing dM/dT. When the Bean profile is formed, only surface density of magnetic flux 
is in equilibrium with the external field. However, if the flux density is allowed to relax for 
a large time, one expects that the slopes of FC magnetization below the jump and above 
the jump equalize. The ordinary creep of magnetic flux is thus at the origin of difference 
between the FCC and FCW magnetizations in this case. 

Thus, the appearance of pinning for low fields in the overdoped sample and for all 
fields in the optimally doped sample allowed us to explain the behavior of magnetization 
measured with using different thermomagnetic protocols. On the other hand, the transient 



behavior of magnetization near the jump that appears in the high-field regime of the 
overdoped sample cannot be justified in terms of pinning. The plausible physical picture in 
which the inverted λ-peaks are associated with vortex loops is proposed. 
 

 

 
 
 
 
Fig. 7. ZFCW, FCW, FCC and RFW 
magnetizations in the field of 1.5 T for two 
rates of temperature sweep in the untwinned 
overdoped sample of YBa2Cu3O7−δ . The 
effect of the temperature sweep rate on the 
ZFCW and RFW magnetizations is indicative 
of the creep of magnetic flux. 

 It is worth to note that magnetization calculated in a frustrated 3D XY model [9] 
experience at the transition a change of about 7 to15%, comparable to that in Fig.3. This 
change in the vortex density was interpreted  to take place as a consequence of the 
screening of repulsive intervortex interactions by the thermally excited vortex loops [9]. 
While the magnetization jump always manifest itself in the uniformly frustrated model, the 
entropy change becomes eventually so broad that can be hardly observed numerically. In 
the vortex lattice, the vortices are well aligned and the interactions between them are 
purely repulsive. In the vortex liquid, the interactions, which are proportional to the cosine 
of the angle between the vortex lines, may become attractive. Therefore, it is conjectured 
[9] that the jump in the vortex density, may not coincide with the melting of lattice, but 
correspond to a development of an infinite vortex tangle at a temperature Tl. In practice, 
the temperatures Tm, Tf, and Tl lie very close to each other; a small differential between 
them could be at the origin of the magnetization curve imitating a λ-shaped derivative. 
 The main result of this Section and a foresight for the results of the next Section 
should be brought together as follows. The inverse λ-peaks are observed only at crossing 
the melting line for T>TCP. No fishtails exist in the M-H loops for this field region. There 
occurs a correspondence between the shape of the M-T curves and the M-H  loops:  
(I) No classical broad fishtails occurs in the M-H curves above TCP. In the region of fields 
H<HCP, the M-T curves are shaped as inverted λ-peaks; FCC and FCW curves diverge. 

(II) The standard broad fishtails occur below TCP. In the region of fields H>HCP, the M-
T curves shows the broad σ-like anomalies, which are reversible; FCC and FCW curves 
are fully coinciding. This is found for various oxygen contents, which control the 
location of the CP as shown in Sec. V. In the next Section, the M-H  loops are assessed. 



III. MAGNETIZATION JUMPS AT CLOSING THE  M-H  LOOPS 
 

 The combined effect of creep and flow of magnetic flux below Tm makes the 
hysteresis loops dependent on the field step ∆H employed in the discontinuous 
measurement with SQUID magnetometer. Shown in Fig.8 are the magnetization curves Mi 
vs. Hi measured in such a mode that the prolonged relaxation of magnetic flux at each field 
Hi=i∆H  was avoided. The onset of irreversibility observed in this condition does not 
depend on ∆H. The irreversibility appears at the same Hm(T)-line as in the temperature-
sweep measurements. The inflection point where the second derivative of M(H) curve 
takes the minimum defines the field Hm here. A premelting peak occurs at a field smaller 
than Hm by about 2 kOe. The exact field location of the premelting peak barely changes 
with changing ∆H. Therefore, the interval between Hpeak  and Hm  changes only a little with 
changing ∆H. On the other hand, the magnetization itself depends dramatically on ∆H.  
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Fig.8. M  vs  H obtained 
in overdoped YBa2Cu3O7  
sample by stepping the 
applied field with ∆H of 
±50 Oe and ±550 Oe. 

 The main effect at low temperature, for example, 78 K, consist of a uniform shift of 
both forward and reverse legs of the hysteresis loop. On the other hand, at higher 
temperature, e.g. 81 K, the splitting between the forward and reverse legs increases with 
increasing ∆H . These differences in M vs.H  curves near transition should be associated 
with the differences observed in the M vs. T   curves along the melting line. When the 
pinning and creep extends right up the transition as discussed in the previous Section, the 
splitting between forward and reverse legs strongly depend on ∆H . On the other hand, 
when the M-T curves exhibit the inverse λ-peaks, strongly dependent on the cooling rate, 
the main effect of ∆H on the M vs H  curves consist of the uniform shift of the 
magnetization level below the transition. 

The electric field that is produced upon stepping the magnetic field is proportional 
approximately to ∆H/∆t , where ∆t is time of setting the field Hi  . Because ∆t is not 
significantly changed in the experiment, the electric field increases proportionally to ∆H. 
The supercurrent induced in the sample and evaluated by the magnitude of splitting 
between the forward and the reverse legs of M increases with increasing the electric field.  
 Figure 9 illustrates the increase of the Jc level just near Hm with increasing T. This 
increase is closely related to the origin of zero-field peak of Jc. The Jc falloff with 
increasing field is quick, close to exponential. On the other hand, both the temperature 
dependence of Hm and the temperature decay of magnitude of zero-field peak are algebraic. 



 

 
 
 
 
Fig.9. M-H hysteresis loops 
obtained in YBa2Cu3O7  
between 77K and 85K with 
∆H = ±550 Oe. 
 

 The region of critical fluctuation cover the region of zero-field peak of critical 
current near Tc. Therefore, we plotted the irreversible magnetization against H/t2ν in 
Fig.10. In the fully oxygenated sample, the value of Hm at 77.4 K is ≈7 Tesla (Fig.9). The 
perfect oxygenation in the pulling-grown crystals leads to the strong reduction of Tc from 
the maximum value of 93.5 K. The minimum value of Tc on the overdoped side, which 
corresponds to the sample of Fig.9 is 86.7 K. Combining from  Tm, Hm and Tc the 3D XY 
variable µ0H*=µ0Hm/(1-Tm/Tc)

1.338  [22] we get 139 Tesla. This is the melting field 
extrapolated to zero T. When M is plotted against the variable µ0 H/(1-T/Tc )

1.338, the 
hysteresis loops are closing at 139 Tesla for arbitrary T in the range of 3D XY scaling. It is 
shown for this sample in Fig.10 (d) that all the M-H curves are also collapsed into a single 
universal hysteresis loop, except the region of fishtail. For the other contents of oxygen in 
the sample, the hysteresis loops are closing at µ0H* smaller than 139 T. For “O6.86” µ0H* is 
only 34 Tesla (Fig.10 (a)). The zero-field peak plotted against µ0 H/(1-T/Tc  )

1.338  is 
scaled into the iniversal curve for all the samples with different oxygen content. 
 The scaling of the data near zero-field in Fig.10 can be presented approximately as 
 

Jc  (H,T) = Jc  (0,0) t
2ν e-H/ (H 

0

* ( t*)2ν ]                                   (2) 
 
with t = t* = 1-T/Tc  and µ0 H0* =0.6T independent of oxygen content. It is 
assumed in the scaling of Eq.2 that the field dependence of Jc  near the zero-field peak is 
exponential: Jc=Jc(0,T)e-H/H0(T). The Eq.(2) describes in average the change of Jc in a 
broad (T,H)- range (Fig.10). However, due to the rapid decrease of Jc with field, that is 
exponential only approximately, the value of Jc  just below the transition is not described 
by the Eq.(2). When t=t*, Jc(Hm) should increase slowly with decreasing temperature. 
In Fig.9, the value of Jc   just below the melting transition decreases with increasing Hm. It 
is likely that a reason for this discrepancy is in a small difference between the arguments t 
= 1-T/Tc and t* = 1-T/T*c for the melting line Hm(T)=H*t2ν and the zero-field 
peak width H0(T)=H0*(t*)2ν. This result correspond to a phase diagram with different 
mean-field Tc* and the true Tc of superconducting transition [17]. 
 It is worth to mention the different nature of premelting peaks (Fig.9) and the 
fishtails (Fig.10). The fishtails which appear near Tc in samples with relative low oxygen 
content (Fig.10 (a),(b)) are located at nearly half of H*, while the premelting peaks is 
located above 0.95Hm  as shown in Fig. 9. In the sample with the highest oxygen content 
of Fig.10, these small premelting peaks should reside notably far (0.95H*~133T). In the 
samples “O6.91” (Fig.10(c)) and “O6.99” (Fig.10(d)), the curves M vs. H shown for lowest 



temperatures of 75K (Fig.10 (c)) and 50 K (Fig.10 (d)) exhibit the onset of fishtails, 
indicating that the CP’s are located above these temperatures. The field location of the 
CP’s HCP decreases with decreasing the oxygen content, so that the CP’s fall into the 
measurable range of H (≤7T) in Fig.10 (a) and (b). The rise of fishtails below TCP is due to 
the vortex entanglement associated with the pointlike disorder [23]. 
 

 
 

 
 
 
 
 
 
 
 
Fig. 10. Magnetization 
hysteresis loops scaled in 
coordinates µ0M/t4/3 vs. 
µ0H/t4/3 for the sample 
oxygenantions “O6.86”(a), 
“O6.89”(b), “O6.91”(c) and 
“O6.99”(d). 

In the broad temperature range of fishtail absence in Fig.10 (c) and (d), the pointlike 
disorder is not significant. On the other hand, the pointlike disorder become important with 
decreasing temperature. The critical point delineate this regime at T(1) (=TCP). With 
further decreasing temperature, the role of thermal fluctuations gradually decreases. In the 
low T regime, the transition is dominated by the pointlike disorder alone. According to 
cage model [24], in the limit of low T, the field-driven “disorder-induced” plastic transition 
is temperature independent, Hpl

dis=Hpl

dis(0). The low-T regime is defined by the single 
vortex depinning temperature T*. In the intermediate region, the transition line is 
determined by both the pointlike disorder and the thermal fluctuations. In this regime, 
T*<T<T(1), the field of plastic transition was shown theoretically[23,24] and identified 
experimentally[25] to increase with temperature: 
 

 Hpldis=Hpldis(0)(T*/T)3.33exp[(2c/3)(T/T*)3]                         (3) 
 
In Eq.3, c is the the constant of the order of unity[24]. The transition field Hpl

dis increases 
with increasing T because the disorder potential is flattened by thermal fluctuations. 



The Hpldis in highly oxygenated YBCO crystals was identified in Ref. [25] with 
the beginning of the abrupt increase of Jc at the onset of the anomalous peak effect. 
 Recently the origin of the anomalous premelting peaks in CeRu2 and 2H-NbSe2 
was examined [26] and attributed to “disorder-induced fracturing and entanglement of the 
vortex lattice”. The location of premelting peak in these materials quite near the 
irreversibility line, Hpeak~0.9Hirr, is similar to that shown in our Figs. 8 and 9. In our data, 
only 2kOe separate the Hpeak from Hirr. In the cage model [24], the high-temperature branch 
of the melting line for T>T(1) is not influenced by the point disorder. Also in the 3D XY 
model [22], the line of melting transition Hm= H*/(1-T/Tc)

1.338  is essentially the 
mean-field line Hc2(T) suppressed merely by thermal fluctuations, Hm=CHc2 
(C=Const). According to theory[24], above T(1)=TCP, the point disorder potential is 
fully smeared out by the thermal fluctuations. The onset of the anomalous peak at the 
thermally induced plastic transition Hpl peak m

 In 2H-NbSe

th=H  is at 0.95H (T) in Fig.9.  
2, the onset of the anomalous peak effect is hysteretic, as observed in 

resistivity[27]. The low-field edge of irreversibility at the onset of the peak is shifted as the 
direction of field sweep is reversed. The onset of peak effect is also attributed in Ref.[27] 
to the vortex lattice disordering. The ordering/disordering transition occurs at Hpl

up and 
Hpl

down , where the indexes “up” and “down” refer to the direction of field sweep. It is 
believed that the difference in population of topological defects between upward and 
downward sweeps is at the origin of the difference between Hpl

up and Hpl

down [27]. On the 
other hand, the interpretation of difference between the curves for Hup and Hdown in our Fig.8 
is not unequivocal. The ambiguity comes from the possibility of changing the magnetic 
moment in the course of measurement in the SQUID magnetometer [13]. Beside the 
transition-related changes of M, such as jump for the 1st order component and a λ-peak for 
the concomitant 2nd order component, the magnetic moment changes because of the decay 
of the electric field generated at setting the H-field. This decay is relevant to the data 
shown in Fig.8, because we avoided the long flux relaxation prior to measurement. 
Furthermore, Ravikumar et al [28,29] have pointed out that when the magnetization has an 
irreversible part, a large error in the reverse leg of the hysteresis loop can be caused by the 
effect of field inhomogeneity on the value of Jc. The premelting peak was also interpreted 
to come from a few twin boundaries residing in the sample[30]. Such a interpretation 
cannot be ruled out unequivocally because a small number of residual thin twining stripes 
occur also in our crystals, by virtue of their large size. It can be argued, however, that the 
premelting peak is intrinsic for untwinned YBCO. First of all, we observe this peak in 
other field orientations. Second, this premelting “bubble” was observed recently by torque 
magnetometry in a tiny untwinned crystal [31]. This method, free of the influence of 
inhomogeneous field, shows also that the “bubble” grows with increasing the sweeping 
rate. Finally, one more argument for the intrinsic nature of the “bubble” in YBCO is given 
by the similarity of the premelting peak in YBCO to that in CeRu2 and 2H-NbSe2.  
 Recent torque measurements in a high-quality untwinned YBCO-crystal [31] 
showed that the irreversibility persists right up to the melting transition. In practice, the 
separation of the hysteretic magnetization from the magnetization jumps is difficult. The 
incidental suppression of irreversibility is caused by the various quakes during a 
measurement. The vortex shaking process extends dramatically the reversible region in the 
phase diagram [32,33]. A fast relaxation also can hide a nascent irreversibility. The 
scenario elaborated in Refs. [28,29] suggest that the suppression of irreversibility can result 
in the M-H curves reminiscent of the jumps at the 1st order transition. The separation 
between the jumps and the premelting peaks requires a scrupulous handling. To proceed to 
the experimental details on field and temperature dependence of the magnetization jumps 
in Sect. V, it is useful to consider first the jumps in the theory of linelike melting (Sec.IV). 



IV. (T,H)-DEPENDENCE OF  MAGNETIZATION JUMPS AND LATENT HEAT 
 
 From the very general grounds of flux-line structure description, to maintain the 
Abrikosov crystalline lattice, the distance between vortices a0 should be kept much larger 
than the thermal root mean squared displacement of the vortices ‹u2›½. The Lindemann 
number cL  links these quantities at the event of melting. The melting transition is 
relevant to the phase diagram of a system of interacting elastic lines. Lindemann criterion 
predicts melting to occur when the root mean squared displacement exceed a fifteenth of a 
center-to-center nearest neighbor distance in a crystal, cL>0.15. The intensity of vortex 
motion which gives rise to ‹u2› is the function of anisotropy ε =(m/M)1/2 , the 
penetration depth λ(T) and flux quantum Φ0. At melting this function is equated to 
thermal energy kBTm=(4π)-3/2 cL

2 ε a0 Φ0
2/λ2 [34].  With a0 =(Φ 0 /B)1/2   the general 

expression for the melting line becomes:  
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                                           (4) 

 
The derivative dBm/dT can be substituted into the Clapeyron-Clausius relation (Eq.1) in 
place of µ0 dHm/dT using the approximation Bm ≈µ0Hm , which is precise in YBCO. This 
allows to rewrite Eq.1 as follows: 
 

∆S=2∆MBm(1+2Tm λ
-1 dλ/dTm)/Tm    (5) 

 
Due to the temperature dependence of λ, the entropy jump ∆S is strongly enhanced as T 
approaches to Tc  along the melting line. Integrating the Eq. (5) over the elementary 
pancake volume dΦ0/Bm gives Clapeyron-Clausius equation for the entropy per vortex per 
Cu2O4 layer (d=0.117 nm): 
 

∆Sd =2∆M dΦ0(1+2Tm λ
-1 dλ/dTm)/Tm   (6) 

 
The latent heat per vortex per bilayer Qd=∆SdTm can be regarded as a sum of  two terms: 
 

Qd=Q0d+Q0d 2Tm λ
-1 dλ/dTm      (7) 

 
where  

Q0d =2∆MdΦ0

       (8) 
 

is the rather small latent heat obtained in Monte-Carlo simulations with a typical value of 
0.07kBTm [35]. Typical experimental values of Qd  exceed Q0d  by an order of magnitude. 
While Qd is determined exclusively by the field-induced vortices, the second term in 
Eq.(7) takes into account the microscopic degrees of freedom underlying the temperature 
dependence of the London penetration depth λ(T). The latter leads to the enhancement of 
the total entropy ∆S with respect to its configurational part ∆S0, as suggested by Dodgson 
et al [8]. The interpretation of the temperature dependence of the free energy within the 
London model in Refs.[7,8] renders precisely : 
 

   ∆S=∆S0 (1+2Tλ-1 dλ/dT)                  (9) 
             ∆Sd=∆S0d (1+2Tλ-1 dλ/dT) 



 
where ∆S0d=2∆MdΦ0/Tm=Q/Tm. It is conceivable to link the first and the second terms of 
the factor 1+2Tλ-1dλ/dT with the rearrangement in the field-induced and in the 
thermally generated degrees of freedom, respectively. The thermally generated degrees of 
freedom are the electronic degrees of freedom associated with the fluctuations of the 
amplitude of the superconducting order parameter.  
 Considering the procedure of the field-induced vortex disordering at melting, 
Dodgson et al [8] have expressed the configurational term ∆S0  through the number of the 
elementary degrees of freedom Nedf = 1/εa3

0 = (B/Φ0)
3/2/ε : 

 
∆S0 = ηkB (Bm/Φ0) 3/2/ε      

(10) 
                  ∆S0d=ηdkB (Bm/Φ0)

1/2/ε     
  

so that each degree of freedom contribute to ∆S0 with a small fraction of kB , namely:  
 

ηkB=(2π)-1 kB     (11) 
 

Temperature dependence of the magnetization jumps can be obtained expressing ∆M either 
from Eq.(5) or from Eq.(6) and substituting the configurational part of entropy from 
Eqs.(10), with Eqs.(9) taken into account: 
 

∆M= ηkB TmBm1/2 /2 εΦ0
3/2   (12) 

 
 Substituting Bm from Eq.(4) and η from Eq.(11) into Eq.(12) leads to 
 

    ∆ ΦM cL=
2

0
5 2 24 /( )π λ

     (13) 

 
Using this result, the Eq.(8) is rewritten as follows:      

     
 0d L 0

                                                                 
Q = π-1/2dc 2 (Φ /4πλ) 2    (14) 

Choosing cL =0.15  gives to the following estimate for the jump of magnetic induction 
 

∆B=µ0∆M= 4.0 x 10-5 µ0Φ0 /λ2    (15) 
 

Converting this to CGS units (Φ0 = 2.07x10-6 G/cm2) , gives ∆B=5.1x10-4 Φ0 /λ2. 
This result was obtained also in Ref. [36]. The temperature dependence of ∆M (~λ-2) 
follows that of Q0d, the latent heat obtained in the Monte-Carlo simulations. We see thus 
that ∆M should vanish monotonously with T approaching to Tc. The experimental results, 
described in the next section, shows that the apparent magnetization jumps (inverse λ-
peaks) are not monotonous. Indeed, the magnetization jumps ∆M should vanish not only at 
T → Tc   but also at T→TCP , because the 1st order transition character vanish at the CP. 
Most frequently, the jumps ∆M culminate at the fields intermediate between the lower and 
upper critical points. The sources of the nonmonotonousness of ∆M(H,T) are also 
discussed in the Sections VI and IX. 



V. DIFFERENT OXYGEN CONTENTS IN YBCO 
 

 The behavior of magnetization in a vicinity of melting transition depends 
dramatically on the sample oxygenation. The plots of both the full and the reduced 
magnetization indicate in general that the inverse λ-peaks increase in magnitude and in 
width with desoxygenation (Fig.11).  

 
Fig.11. Plots of full (top) and reduced (bottom) magnetizations near the melting transition for 
sample oxygenations “O6.98” (left) and “O6.99”(right). The sample was oxygenated at 410oC and 
350oC for  “O6.98”  and “O6.99”, respectively. Note an increase of difference between  FCC and 
FCW magnetizations with increasing magnetic field.  
 
 
 It is shown in Fig.11 that the temperature/field dependence of the inverse λ-peaks is 
not monotonous. In the sample “O6.98”, the FCC inverse λ-peaks culminate around 5 T and 
the FCW inverse λ-peaks culminate around 3.5 T. In the sample “O6.99”, the FCC inverse 
λ-peaks culminate around 3.5 T and the FCW inverse λ-peaks culminate around 2 T. 
Clearly, the magnitude of the inverse λ-peaks decreases at moving along the melting line 
from these culmination points toward the CP. Concomitantly, the widths of the inverse λ-
peaks decrease. It is useful to show at this point how these singularities evolve above the 
CP. So far, the CP was detected as a point at which the sharp kink in resistivity disappear 
and the resistive transition start to broaden [11]. López et al [12] have shown that the CP is 
also a point at which the longitudinal and transverse resistivities (ρc and ρab, respectively) 
start to onset incongruently. The dissipation sets in when the correlation between the 
moving vortices is lost. The in-plane and out-of-plane correlations are lost at different 
temperatures/fields. It was thus two “melting lines” identified above the CP: one is due to 
the loss of vortex correlation along the c-axis (along the field) and another is due to the 
loss of vortex correlation in the ab-plane. Above the CP, the loss of correlation between the 
vortices in the ab-plane is retarded with respect to the outstripping loss of the correlation 



along the c-axis. This situation is quite opposite to the one which occurs in the twinned 
crystals, where by the effect of twinning planes the predominant c-axis correlation between 
the pancake vortices tends to be preserved longer. 
 Recently, the CP was observed also using the magnetization measurement 
[14,25,37]. The CP location was identified in the M vs. H curves at the intersection of 
the melting line and the fishtail line. Two of the lines at this intersection are well defined. 
One is the fishtail line well identified with the maximum of Jc. Another one is the low-
field branch of Hm, that is the line of 1st order melting transition [14,25,37]. The other lines 
connected to the CP are ill-defined, as their determination depends on the particular 
experimental details, e.g. crystal thickness in the Vtop-Vbottom measurements [12]. 
 In this work, the CP is studied for the first time using the measurements of M vs. 
T curves throughout the transition line. In the highly oxygenated samples, the CP cannot be 
accessed with the SQUID magnetometer (HCP>7 T). On the other hand, we have found that 
in the slightly desoxygenated YBa2Cu3O7-δ with δ≥0.11 the CP does not occur because 
the transition is of 2nd order in the overall range of magnetic fields. This situation is shown 
in the top panel of Fig. 12. Only for the narrow intermediate oxygen contents the CP fall 
into the range of magnetic fields accessible with our SQUID magnetometer. 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.12. The plots of 4πM/H 
vs. T for sample 
oxygenations “O6.86” 
(optimally doped) and 
“O6.98” (overdoped). Only 
in the overdoped sample 
the FCC and FCW 
magnetization branches are 
not coinciding. 

 Figure 12 enables a comparison between the 1st order transition in the sample 
“O6.98” (overdoped) and the 2nd order transition in the sample “O6.86” (optimally doped). 
Here again we go from one sample to another by simply changing the oxygen content in 



the same untwinned single crystal. These dense-mesh magnetization data are best 
demonstrated with using the quantity M/H, shrinking the magnetization scale at large 
fields. The FCC and FCW branches are divergent only in the sample with higher 
oxygenation. In the optimally doped sample, the M vs.T magnetization curve is fully 
reversible on the both sides around the 2nd order transition. Excluding this feature, some 
similarity between the FCC-behavior of these samples can be recognized for the low-field 
region. Namely, the FCC magnetization tends to be temperature-independent just below 
the transition in both samples. On the contrary, in the high-field region the magnetization 
behaves differently between the two samples. Specifically, in the overdoped sample, the 
magnetization below the transition follows the slope of reversible magnetization, while in 
the optimally doped sample it remains temperature-independent. However, the most 
striking difference between the two samples in this high-field region is in the magnitude of 
magnetization anomaly. The inverse λ-peak in the overdoped sample appears to be very 
small compared to the broad σ-like anomaly in the optimally doped sample. 
 

Fig.13. The melting lines in the sample annealed 
in oxygen flow at different temperatures. 

 
Fig.14. Melting transition near the critical point 
in the sample annealed at 510oC.

 
 Figure 13 shows the melting lines for a large number of oxygen contents in the 
same single crystal. It is worth to note that there exist two characteristic slopes for these 
the melting lines. The larger slope is observed only in highly oxygenated samples, obtained 
when the crystals were annealed in the oxygen flow below 500oC. The other characteristic 
slope of the melting lines is at least twice smaller and pertinent to the samples annealed in 
oxygen at 520-540oC. For the intermediate temperatures ( 510oC, 515oC, 520oC ), the 
melting line consists of two branches. These two branches are connected at the CP.  
 The jumps in the immediate vicinity of the CP are shown in Fig.14. The huge 
difference in magnitude between λ-like and σ-like anomalies manifests itself in this Figure 
as a decrease of the magnitude of the σ-like anomaly as the CP is approached.  
 The data for the Tc’s and for the slopes of melting lines in the samples of Fig. 13 
are summarized in Fig.15. The bell-shaped curve of Tc vs. δ is climbed by 1-2 K with 
respect to the flux-grown crystals [38] suggesting the very high purity of our pulling-
grown crystals. Moreover, the bell-shaped curve is culminated for the annealing in oxygen 
at 520oC, which is significantly larger than the optimum annealing temperature for Au-
doped crystals[39]. The melting lines were fitted with the 3D XY scaling law 
 

     Hm(T)=H*(1-T/Tc)2ν          (16) 
 



where ν=0.669 is the critical exponent for the 3D XY model. In these fits, both H* and Tc 
were varied. In spite of very small transition width in our crystals (below 0.3 K), it was 
observed in the region 7-δ> 6.92, that the fitted Tc’s lies within the range of 3∆Tc to the 
true value of Tc measured in a small field (10 Oe). The slopes of melting lines H* observed 
in the region 7-δ > 6.92 bring together the previously reported values of 139 T[4], 133 
T[40],  122.5 T[22], 99.7 T[3], 69.5 T[41].  
 In the intermediate range of oxygen contents two characteristic slopes coexist for 
different fields. The steeper slope is associated with the low-field branch of melting 
transition and the shallower slope is associated with the high field branch of the melting 
transition. In the fit with Eq.(16) , these two slopes are averaged, and as a result we get in 
Fig.15 the abrupt change of H* for these samples ( 510oC, 515oC, 520oC ).  

The 2nd order transition near optimal doping shows µ0H*~40 T. This slope is by an 
order-of-magnitude larger than µ0H* ~ 4T in the YBa2Cu3O6.6 with Tc of 60K[42].   
 

 
Fig. 15.  H* and Tc vs oxygen 
content 7-δ. The YBCO single 
crystal was annealed in the oxygen 
flow at temperatures shown on the 
top scale. The oxygen deficiency δ 
is adapted from the scale of 
Lindemer et al[9]. 
 

 
  

 
Fig.16.  Fields of melting transition in  YBa2Cu3O6.97 
(1st order) and in YBa2Cu3O6.86  (2nd order) plotted 
against the variables Tc/T-1 and 1-T/Tc. and 1-T2/Tc

2. 
Also shown are the slopes of 1, 4/3, and  2, verifying 
the theories of decoupling, 3D XY melting, and mean-
field, respectively. The slope 4/3 is best for both the 1st 
order and the 2nd order transition lines.

 



It is useful to examine whether or not the observed melting lines are consistent with the 
existing theoretical ideas. For the sake of such a comparison we have plotted the melting 
fields against the variables Tc/T-1 and 1-T/Tc , which are relevant to the theories of 

decoupling and melting, respectively (Fig.16). The variable 1-T2/Tc2 is also pertinent to 
the mean-field approach, as follows from the Eq. (4). The comparison of the slopes in Fig. 

16 suggests that the upward curvature of the melting lines agrees best with the 3D XY 
model [22] for both the 1st order and the 2nd order transitions. It should be noted that except 

the simplest version of the mean field (Eq.4), the mean-field melting line with Hc2-
correctinons [43] may fit well the experimental data.VI. 



  (T,H)-DEPENDENCE OF MAGNETIZATION JUMPS  
BEYOND THE MEAN-FIELD-BASED PICTURE OF LONDON VORTICES 

 
 The London model, in which the phenomenological temperature dependence of 
penetration depth λ2(T)=λ2(0)/(1-T2/Tc2) and the mean field line 
Bc2(T)=Bc2(0)(1-T2/Tc2) are assumed in accordance with BCS model, describes 
perfectly the observed shape of the melting line in YBCO with reasonable Lindemann 
number cL=0.19 [43]. In order to get this result, Dodgson et al [43] have renormalized the 
London energy scale ε0 = (Φ0/4πλeff)2 and anisotropy ε , introducing a dependence of these 
quantities on magnetic field. The effective penetration depth thus defined becomes 
divergent not only near Tc but also near Hc2. This correction renormalizes the elastic 
moduli of line-like flux system in the high-field limit.  The shape of the melting line model 
could be thus adjusted with the numerous parameters to give the experimentally observed 
temperature dependence with clearly lower curvature than that given by Eq.(4). 
 Retaining unaltered the mean-field line, Hc2(T)=Hc2(0)(1-T2/Tc2) is an 
additional assumption made in the field-induced renormalization of the London energy 
scale [43]. In YBCO, however, the line Hc2 is totally cleared away by thermal fluctuations. 
There is no indication that the mean-field picture should be retained. The 3D XY model 
[22] suggest that the line Hc2 can be described by the power law (1-T/Tc)1.338.  In this 
case, the melting line Hm represent the line Hc2, suppressed by thermal fluctuation, Hm= 
CHc2, with the temperature-independent factor C=const.  The hyperscaling [44] suggest 
also that C should not depend on the oxygen content, except the case when the order of 
transition changes with changing the oxygen content [14]. It is plausible to reverse the 
melting line fitting  and use the analytical expression for the melting line, Eq. (16), to 
obtain the (T,H)-dependence of the magnetization and entropy jumps.  With this 
prescript, the temperature dependence of magnetization jumps is given by Eq.(13) in which 
λ(T) is substituted by λeff(T). Then the entropy per vortex per bilayer ∆Sd and its 
configurational part ∆S0d are found from ∆M according to the Clapeyron-Clausius equation: 
  

    ∆Sd =-µ0∆MdΦ0(dH /dT )B -1  
m m m 

           (17) 
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Because the Eq.16 fits well the experimental data, we substitute into the Eqs.(13) and (17)  
the temperature dependence of penetration depth in the 3D XY model: 
 

    λeff (T) =λ(0) eff(1-T/Tc)−ν/2          (18) 
     

This function for penetration depth for ν ≈ 2/3 was also found in the zero-field microwave 
experiment [45]. Curiously, the argument Tc/T-1 relevant of the decoupling (sublimation) 
hypothesis [46] appears to give the enhancement factor of entropy in Eq. (17):  
 

2Tλ-1 dλ/dT=ν(Tc/T-1)-1      (19) 

 

Compared to the mean-field λ (ν=1), the divergence of λeff near Tc is slower. If we directly 
apply the final result for ∆M using the Eq. (15), then the ∆M falloff near Tc is slowed down: 



 
     ∆M  ~ (1-T/Tc)ν           (20) 

  
This expression is in improved conformity with the weakness of the temperature 
dependence of the magnetization jumps observed in our experiment. On the other hand, the 
non-monotonous behavior of ∆M vs. T is still not described by the Eq. (19).  This 
disagreement could be related with the corrections to be introduced in the volume per 
elementary degree of freedom. The temperature dependence of the entropy jumps given by 
Eqs. (9) and (10) is different than that given Eqs. (17) with ∆M substituted from Eq. (20). 
The estimation of the number of elementary degrees of freedom given by 1/εa0

3 ignores the 
disorder in a sample. Since by changing the oxygen deficiency in a sample we can move 
the location of the CP,  Nedf is scaled not only with field and anisotropy but also with 
disorder. The disorder thus leads to the nonmonotonical dependence of ∆M vs T. 
  

VII.  FIELDS PERPENDICULAR TO C-AXIS 
 

 The inverse λ-peaks in the M vs T curves were observed also in a geometry of tilted 
fields and for H⊥c.  The magnetization jumps at closing the M-H  loops were also observed 
for fields parallel to Cu-O chains (Hb). Figure 17(a) shows the inverse λ-peak observed 
at field-cooling (FCC) for Hb and warming (FCW, ZFCW) modes. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 17.  (a) Magnetization jumps 
for warming the untwinned 
sample cooled in field (FCW), in 
zero-field (ZFCW) and for field-
cool cooling (FCC) for fields of 
3T, 5T and 7T applied along the 
b-axis; (b) for field of 7T along a 
and b axes; (c) for field of 5T 
along  a and b axes. 
 

 



The inverse λ-peak observed at field-cooling (FCC)  for Hb is larger than that observed 
at warming (FCW, ZFCW). Surprisingly, the λ-peak reverse its sign in the orientation 
(Ha), in other words, for the fields in the ab-plane perpendicular to Cu-O chains. The 
field dependence of the amplitude of the λ-peaks is also reversed for this orientation of the 
field. It is shown in Fig. 17 (b), (c) that the magnitude of the λ-peak decreases with 
decreasing field. This is in contrast to the field dependence of magnetization jumps in both 
(Hb) and (Hc) orientations. Figure 18 shows the magnetization jumps at closing the 
hysteresis loops M vs H. These jumps shows smaller magnitude than the jumps for the 
same temperatures in Fig. 9. Even compared in the same range of magnetic fields (3-6T) 
the jumps are smaller in the (Hc) orientation than in the (Hb) orientation, if the 
same value of the measurement step ∆H is employed. However, compared to the level of 
reversible magnetization, the jumps are larger for (Hb) than for (Hc). 

 
 

 
 
 
 
 
Fig.18. M-H hysteresis 
loops obtained for 
(Hb)  in YBa2Cu3O6.99  
at 85.4K and 85.6 K. The 
sample was annealed at 
350oC. 

 
 

 
The observation of the angular-dependent magnetization jumps (λ-peaks) is in agreement 
with the fact that the magnitude of these anomalies is much larger than that expected from 
the typical latent heat. The latent heat of vortex-lattice melting for varying angles 
Θ between the magnetic field and c-axis was recently measured [47]. It was found that the 
latent heat depends solely on the temperature and does not depend on Θ or melting field. 
This is not in disagreement with our data because the λ-peaks are associated with 
premelting peaks and the fast relaxation of these singularities takes place. The scenario, in 
which a few residual twinning stripes are fully responsible for the premelting peak [30], is 
not plausible because the premelting peak does not vanish for (Hb)or for (Ha). The 
reason for deviation of the magnetization anomalies from the expected fully 3D behavior 
could be related to vortex tilting instabilities at large angles (Θ∼90ο). It was observed 
recently in YBa2Cu4O8 that the resistive transition shows anomalous behavior at large 
angles above the “melting” kink [48]. These anomalies were interpreted to be produced by 
a competition between the intrinsic pinning and the intervortex interactions. We believe 
that the intrinsic pinning should indeed suppress the admixture of the 2nd order character 
phenomena observed at the melting transition in our samples. 



VIII. THE EFFECTS OF COOLING RATE, “NON-DIPOLAR” SQUID RESPONSE  
AND SAMPLE QUALITY 

 
 The melting transition manifests itself in the magnetization in the form of jumps ∆M 
or inverted λ-peaks depending on the relative influence of several effects.  The most 
important of them are the rate of temperature/field sweep/stepping, the “nondipolar” 
response of the SQUID magnetometer and the sample quality. In the SQUID 
magnetometer, the sample is scanned through a set of pick-up coils arranged into a second 
derivative gradiometer configuration [49]. We collected the data using various scanning 
lengths starting from 0.2 cm. The MPMS software accepts settings for scan length in the 
range from 0.1 cm to 12 cm. Operations with small scanning lengths are not conventional 
because the data collected in this regime are more sensitive to the non-ideal shape of the 
SQUID gradiometer output signal V(z). The procedure of sample centering may require 
many iterations for small scanning lengths. This difficulty is avoided by following a 
sequence of operations: (i) centering the sample with larger scan length; (ii) setting smaller 
scan length; (iii) adjustment sample position; (iv) recentering sample with small scan 
length. The step (iv) may not require then centering reiterations for perfect centering of the 
sample for even very small scans. 
 
 
 

 
Fig.19. FCC and FCW magnetizations in the 
field of 7T measured with different rates of 
cooling and warming. 
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The dependence of the magnetization on the cooling rate is the most clear evidence 
that origin of the inverse λ-peaks is non-trivial. Figure 19 shows the FCC and FCW 
magnetizations near the first order transition measured with different rates of temperature 
sweep. The data were obtained with the scanning length of 16 mm. Figure 20 shows the 
sample magnetization data obtained in FCC mode with a rate of 0.18 K/min and with 
different scan lengths. The sample for this measurement was annealed at 410oC and it 
shows the melting transition at 81K in the field of 5 Tesla. Clearly, the scatter of data 
obtained with different scanning lengths is only a few percent above Tm, however the data 
differ twice or so below Tm. These data show that an additional factor appears below Tm 
which makes the measured magnetization value dependent on the scan lengths, at least 
when the latter was set to be small enough. The dependencies observed for different values 



of the applied field are very similar. The data obtained for two different fields at warming 
(FCW) and cooling (FCC) of the fully oxygenated sample are shown in Fig.21. These data 
are as well scan-length dependent below Tm. It is well known that a vortex glass displaying 
a hysteresis at a 1st order transition may show a very broad distribution of relaxation times 
[50].  Both the time at which sample was exposed below Tm and the cooling rate should 
affect the hysteretic behavior near the transition [50,51]. Despite the cooling rate was fixed 
in the measurements shown at Figs.20,21 as well as the warming rate itself was constant 
(0.18 K/min) one observes clearly the effect of scanning length. 

 
 

  
 

 
Fig. 21. The inverse λ-peaks of the magnetization for fields of 5T and 7T in the fully 

oxygenated sample. The FCC and FCW magnetizations were measured with the scan length of 10 
mm, 6mm (left panel) and 2 mm (right panel). 
 

The difference between FCC and FCW data becomes more pronounced when the 
small scan lengths are used. Because such a difference could be clearly observed for small 
scanning length, it can be argued that previously claimed reversible character of 
magnetization below Tm [4] is not likely even for “good” samples. It was argued 
previously [4], that the reversible behavior of the field-cooled magnetization could be 
observed well below the melting transition in “good” crystals, and such a feature would 
certify the high quality of the samples. However, the magnetic response can be clearly 
distinguished between the vortex phase regions above and below the melting line Tm(H), 
and the irreversible behavior could be reconstructed as soon as T<Tm using the available 
regimes of operating the SQUID gradiometer. This is quite an original result since for the 
conventional mode of SQUID-measurements the “reversible” behavior of MFC(T) 
magnetization was also observed in this work, which suggest, in fact, similar quality of the 
crystals. We argued [13] that these discrepancies originate from the appearance (just at the 
melting transition) of the “non-dipolar” contributions into magnetic response of the 
samples. 

Above Tm the SQUID output signal can be well approximated by the response 
function of a point magnetic dipole with coordinate ζ at the axis of a second derivative coil 
gradiometer [49]: 

 
h(ζ)=-1/2R2((R2+(ζ-L)2)-3/2 + (R2+(ζ-l)2)-3/2 +(R2+(ζ+l)2)-3/2 +(R2+(ζ+L)2)-3/2)        (21) 

 
where R is the radius and L and l are the vertical positions for the two sets of the second 
derivative gradiometer coils. The shape of a distorted SQUID output signal below Tm can 



be understood from the principle of reciprocity between the magnetic flux Φ produced in a 
gradiometer coil by a magnetic moment µ and a magnetic field B produced by the same 
coil carrying a current I  [52]:  

 
ΦI= mB      (22) 

 
By allowing some variation in magnetic response of the sample as it is scanned along 

z and letting the specimen to have a finite size the following expression for the SQUID 
voltage in function of position z can be derived from Eqs.(21,22) [51]: 

 
V(ζ)=m(z)h(z)+q(z)hζ'(z)+o(z)hζζ"(z)+...)  (23) 

 
In this expansion series, m, q and o stand for the dipole, quadrupole and octupole 

moments which can be calculated by integrating over a specimen of a finite size the 
expressions m(r), zm(r), (3z2-r2)m(r)/2, respectively [53]. In the latter 
expression (Eq.23), all the moments m, q and o are allowed to depend on the position of 
the sample in the solenoidal magnet. Such a dependence may be produced if the sample is 
pulled through non-uniform magnetic field during the measurement scan. The purely 
dipolar SQUID output signal correspond to the following conditions: 

 
m(z) = const   
q(z) =0                 (24) 
o(z)=0   

   ...         
The estimates of what condition among those listed in Eqs.(24) is broken to cause the 
observed “non-dipolar” SQUID signal should be taken with caution since the inbuilt 
MPMS software displays the voltage V(z) resulted after subtraction of the linear drift. 
Therefore, the odd-order-derivative poles (quadrupole, 16-pole, 64-pole) are interfered in 
the fitting procedure with the linear “drift” terms, so that the resulting odd moments could 
not be ascertained until the fit is done in the much larger scan range than the employed 
scan (e.g. from -2 cm to 2 cm). The larger scan, however, will involve the measurement in 
less homogeneous field, which could destroy the inhomogeneous FC state. 

 Whether or not retaining more than one term in the Eq.(23) is essential for 
explaining the “non-dipolar” SQUID output signal was a confusing point in a number of 
previous works [13, 53-58]. The plausible variation of the dipolar response m(z) with z 
was searched in this work to explain the observed “non-dipolar” effects in V(z). The 
problem was to find the flux flow effects which may produce a quick variation of m(z) 
near the center of the scan, so that decreasing the scan length leads to a rapid increase of 
the absolute value of the measured output signal.  

 It is worth to note that besides the tiny field inhomogeneity which may lead to the 
condition m(z) ≠const, and the finite sample size which gives 
q(z) ≠0 and o(z) ≠0,  there could exist another factor changing the shape of SQUID 
output signal, which is difficult to reproduce and control.  In the fully oxygenated sample, 
we have performed the additional experiments to reproduce the narrow inverse λ-peaks 
shown in Figs.3 and 21. The time of a few weeks was elapsed between the first and the 
second experiments. Figure 22 shows the data obtained in the second experiment. The 
measurement conditions in the second experimental setup including scan length and the 
sample attachment were reproduced as closely as possible. However, the λ-peaks observed 
in the second experiment, are significantly broadened (Fig. 23). 
 



  

Fig.22.  The FCC magnetization measured in 
fields of 3, 4 and 5 Tesla with cooling rates of 
0.05 K/min and 0.15 K/min and FCW 
magnetization measured at 0.15 K/min in a fully 
oxygenated YBCO single crystal. The sample 
and the scan length (1.6 cm) are the same as in 
Fig. 3. The temperatures Tm and Tf are affected 
neither by an experimental setup, nor by a time 
elapsed from the sample preparation, however, 
the behavior of magnetization below T

m
 (T

f
) is 

changed. 
 

 
 
 Fig.23.  Comparison of the FCC 
 magnetization measured in fields of 3,4 
 and 5 Tesla with the cooling rate of 
0.05  K/min  between the two experimental 
 setup shown separately in Fig.3 and in 
 Fig.22. Note the exact coincidence of 
 the right-hand shoulder of the inverse 
 λ−peaks. 
 
 
 
 

 Various explanations of the distorted V(x) were discussed previously [13,59]. 
Except for the intrinsically inhomogeneous FC magnetic state, the inhomogeneity of the 
applied magnetic field and the formation of the transverse field component in the sample 
were analyzed as the possible external sources of the observed inhomogeneous magnetic 
state[59]. Concerning the transverse magnetization component as another possible source 
of the distorted SQUID signal suggested previously for the thin films[59], it is clear by 
now that the transverse dipole passing through a second derivative coil array should result 
in zero response function due to symmetry. Recent calculations [60] showed that if such a 
dipole is off-centered from the axis of the gradiometer, then it could, indeed, induce the 
distortion of V(z). However, corresponding component of the voltage is asymmetric with 
respect to the center and could be mixed in the fit with the “quadrupolar” response term. 
The latter could not be ascertained from the typical measurement because the odd terms in 
the expansion series (Eq.4) should mix for short scanning lengths with the subtraction of 
linear “drift” term employed in the MPMS software. 

The possibility variation of m(z) with z-coordinate was discussed extensively with 
regard of the distorted SQUID signal observed in the YBCO thin films[59,61-63]. 
Libbrecht et al [61] discussed the situation when the measured dipolar moment would 
acquire a z-dependence due to the non-uniformity of the magnetic field along the axis of 
the solenoidal magnet. When the sample is pulled through the non-uniform field, the 
removal and backloading of vortices occurs in conformity with the pinning properties of 
the sample. Below the irreversibility line the field variation during the cyclic sample 
motion would produce the minor hysteresis loops (MHL). Wrapping the MHL at each 
measurement cycle results in a change of sample magnetization m(z) during the cycle and 
could produce the distorted SQUID signal V(z)= m(z)h(z) [61]. The calculations of 
MHL[61] were in a good agreement with the experimental data for YBCO thin 
films[59,61,62] in a case when the external field was assumed to have a minimum in the 



center of gradiometer coils array. The minimum in the field profile was observed in the 
center of the magnet at small applied fields [49,64]. In such a case, the reduction of the 
field in the center of gradiometer was argued to produce a reduction of the absolute value 
of magnetization. The latter was implied to reverse sign near Tc due to such an effect, 
which was observed close to Tc, while far below Tc the distortion of the SQUID signal was 
observed to vanish [49,59,61,62]. The undistorted low-temperature shape of the signal 
V(z) was explained by relatively small variation of the magnetization at wrapping the 
MHL due to the increased critical current at lowering temperature[61]. A characteristic 
profile V(z) in Refs.[49,59,61,62] exhibits a reversal bump near the center of gravity, 
which is clearly different from V(z) observed in our work [13]. 

The employed scan length start to affect the measured value of the magnetization 
below Tm as a result of divergence between measured curve V(z) and inbuilt MPMS fit 
function h(z). The observed central peak of V(z) is sharper than that for h(z). With 
smaller scan length the fit function mimics the enhanced curvature of V(z) by increasing 
the value of m0, which is the factor of the derivative dV/dz=m0dh/dz. The sensitivity 
of data to the shape of V(x) is enhanced when the scanning lengths is reduced. This leads 
to the typical scan-length-dependence of the measured magnetization as shown in Fig.24. 
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Fig. 24. Scan length 
dependence of the magnetic 
moment in a field of 7T at 72 
K.  The value of Hm in the 
field of 7T in this sample is 
79.5 K. 

We attempted to rule out the explanation of the distorted SQUID signal due to MHL 
in our previous work [13]. First of all, the effect of field inhomogeneity should vanish at 
very small scanning lengths, however the effect showed an apparent increase. Furthermore, 
our approach [13] was based on the observation of the effects of field inhomegeneity at 
very large scan lengths and at low temperatures where Jc is large. When the scanning 
length exceeds the value of 54 mm the measured µ0M starts to grow progressively with 
increasing scanning lengths. The field reduction occurs at the edges of the scan (>54 mm), 
where the signal from the second derivative coil array is very small. In this case, the MHL 
leads to the development of the “homogeneous” Bean critical state which result in the ideal 
shape of V(z) signal in the center of the scan (-25mm<z<25mm). For large Jc’s the field 
inhomogeneity manifests itself clearly when the scan length exceeds 54 mm. We 
concluded that the field inhomogeneity in the center of scan is very small. On the contrary,  
Roy et al [65] have explained the curious effects of scan lengths by the enhanced field 



inhomogeneity in the center of the SQUID magnet. In this work, we propose a model, 
which could explain approximately the observed dependence of the SQUID output signal 
on the scan length by taking into account the observed rapid relaxation. In this model, the 
magnitude of field inhomogeneity is not essential, however, the sign of dH/dz is 
important. Due to symmetry dH/dz changes sign in the center of magnet. Figure 25 shows 

 
Fig. 25. Top: Product h(z)m(z) for m(z)= -1+0.01sgnm(z)(circles) and the fitted 
function mMPMSh(z-z0) (line) for the scan lengths of 0.5 cm. Middle: the scan lengths 
dependence of the “MPMS SQUID output” mMPMS determined from fitting the function 
mMPMSh(z-z0) for the product h(z)m(z). Bottom of figure: The scan length dependence of 
the fitted off-centering z0. 

the result of fitting of the product h(z)m(z) with the function mMPMSh(z-z0). We 
assumed that m(z) changes with z in a step-like manner. The step ∆m=0.01m occurs in 
the center of the scan, z=0. This step arises from the finite reaction of the flux flow in the 
solid phase on the sign of the field gradient. Such a step-like anomaly appears even when 



Jc=0. When the scan lengths is reduced, the output signal mMPMS delivered by the MPMS 
software start to deviate from m=-1. The absolute value of mMPMS increases with decreasing 
the scan lengths in accordance with the experimental data (Fig.24). In the experiment, the 
scan-lengths dependencies similar to those shown in Fig.24 can be obtained even when z0 
is fixed in the fitting algorithm. Although this model cannot clearly explain the latter result, 
this model gives the idea on the origin of the singularity in the center of the scan. 
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Fig.26. Magnetization µ0M vs. applied field 
µ0H measured in a slightly less clean 
overdoped sample at 68 K. The data were 
collected at the reverse branch of the hysteresis 
loop. The measurement was done at each value 
of the applied field eight times during 100s. 

Fig.27. Same sample as in Fig.26, however, at 
77 K. The data were collected at the reverse 
branch of the hysteresis loop. The normalized 
creep rate S=dln∆M/dlnt is calculated from 
averaging the derivative data for last six 
measurement of the total eight.  
 

 
 Finally, let us discuss briefly the effect of impurities on the melting transition. 
Figures 26 and 27 show the flux pinning and creep phenomena in the slightly impure 
crystals grown by the same technique [66]. In the overdoped state, these crystals show the 
similar Tc of 87 as pure crystals, however, by optimal doping the Tc value can be raised 
only up to 92.5 K instead of 93.5 K. Although at low temperature (Fig.26) the hysteresis 
loops are qualitatively similar to those shown in Fig.10 (d), the fishtail effect does not 
disappear at higher temperature (Fig.27). Instead of the premelting peak one sees in Fig.27 
the split fishtails. Different explanations are proposed for the fishtail splitting [14,66]. The 
rate of the flux creep changes with field following the oscillations of the logarithmic 
derivative of Jc. At approaching the irreversibility line the critical current decreases 
gradually from the very large peak values. Correspondingly, the flux creep rate increases 
slowly at approaching the transition and no clear melting transition can be seen. 
 
  

IX. DISCUSSION 
 



 Our analysis [67] suggests that there exist the intrinsic origin of the observed non-
monotonic behavior of magnetization jumps unrelated to the experimental artifacts. Along 
the 1st order transition line, the magnitude of the jump ∆M culminates at a point located 
below the CP. The mean-field-like monotonous decrease of ∆M at approaching Tc may 
correspond, in principle, the right-hand shoulder of the overall curve ∆M vs. T. Several 
origins for the existence of the extremums in ∆M along the melting line are known up to 
date. The vortex loop theory [68] suggest that the equilibrium vortex density is perturbed 
after quenching through the transition. In its standard form, this theory is applicable rather 
close to Tc.  In analysing the experimental data, we bear in mind that the character of 
transition may change even several times when going along the melting line.  

First of all, the diamagnetic fluctuations render a substantial difference between the 
relevant fields H, B and Happ at very small fields. This leads to the inverse 3D XY scaling 
for  H<10-5 Oe and T-Tc<10-7 K [69]. Approaching the transition the 3D XY correlation 
length diverges more rapidly than the penetration depth (Eq.18): 

 
ξab (T) =ξ ab (0) (1-T/Tc)−ν              (25) 

 
The point of 3D XY inversion is determined from the equation 
 

ξ ab (0)(1-T/Tc)-ν  = λeff(0) (1-T/Tc)−ν/2    (26) 
 
Because the condensation energy in the 3D XY model is proportional to ξ(0)-2, a rapid 
increase of ξ ab (0) is evident from the relationship 
 

ξ ab (0) ~  (H*)−1/2      (27) 
 

where H* is the melting field extrapolated to zero temperature (Fig. 15). 
 Second factor which causes a change of the nature of melting transition at moving 
along the melting line is the effect of low-field pinning associated with zero-field peak of 
critical current. It is assumed in Eq.2 that the width of the zero-field peak scales with 
temperature very similarly to the scaling of melting line: 
 

H0=H0*(1-T/Tc)2ν       (28) 
 
In the case when both scalings, Eq. (16) and Eq.(28) are fulfilled simultaneously, no 
change of pinning effect along the melting line is expected. However, if one of these 
scalings breaks down (e.g., in the optimally doped samples), the pinning associated with 
the zero-field peak become non-equivalent for different melting fields. We have observed 
in Sec. II that most frequently the pinning effect on melting transition is more efficient at 
low fields than at high fields. Also, this effect is probably at the origin of a general trend to 
smoother low-field transition observed in neutron diffraction intensities [70]. The intensity 
of a diffraction reflection integrated over its full rocking curve is proportional to λ-4. With 
the Eq.(18) taken into account this leads to I(t)=I0(1-t)2ν [70]. The plot of the 
experimental values of 2ν vs. Happ in Ref. [70] shows that 2ν is slightly larger than 4/3 for 
small fields, but smaller than 4/3 for higher fields.  Our results show a similar deviations  
in the shape of the melting line. The Hm(T) curve is best described by the exponent 2ν=4/3 
only in average. By varying the fitting range , we have found that 2ν is larger than 4/3 if 
the fit is done in a range limited by 2-3 Tesla in overdoped sample. In the same range, we 



have observed the effect of pinning on the shape of magnetization discontinuity. 
Nevertheless, the 3D XY scaling (Eq. 16) fits the melting curves much better than either 
the sublimation law, Tm~(Tc/T-1), or the mean–field law without Hc2 corrections, 
Tm~(1-T2/Tc2)2. 
 It was also observed by calorimetry that several different regimes of melting 
depending on magnetic field exist separated by lower and upper critical points [71-73]. The 
melting regimes separated by the upper CP are the melting of lattice-like Bragg glass and 
melting of dislocation-rich vortex glass. In accordance with our results, Langan et al [74] 
have observed a strong increase of HCP with decreasing oxygen deficiency. It is worthy of 
note the analogy and the difference between the phase diagram of polydispersed hard 
sphere mixtures [75,76] and the vortex phase diagram. The oxygen deficiency δ in 
YBa2Cu3O7-δ

  plays a similar role as a polydispersity σ, defined as the ratio of the standard 
deviation to the mean diameter of the distribution of hard spheres. When δ or σ increases 
the absolute value of density discontinuity at the transition ∆ρ=ρs-ρl decreases. The 
difference of densities ∆ρ is positive for the Bernal spheres and negative for the vortex 
phases. The discontinuity ∆ρ vanishes at the terminal polydispersity point σt ~ 0.08 [77] 
and at the CP for δCP ~ 0.11 (at Happ=0)[14]. In fact, the critical oxygen deficiency is a 
function of field, so that δCP=0.11 is true only for zero field. We have observed [14] that 
δCP varies slowly with field, so that for µ0H=7T the critical oxygen deficiency is δCP=0.06. 
In other words, HCP strongly increases with decreasing δ, as is also stated in other works 
[37,74]. Taking into account the analogy with the polydispersed hard spheres, the origin of 
the decrease in magnetization jumps ∆M at approaching to the CP along the melting line 
becomes clear. We observed indeed in the present work that the curve ∆M (H) culminates at 
the intermediate fields. In accordance, the location of the maximums on these curves is 
dependent on the oxygen deficiency. These disorder-induced phenomena are not 
apprehended yet in the most of the recently developped theoretical considerations [8,43]. 
 In the system of the polydisperse Bernal spheres, there exist a range of 
polydispersities in which the crystallization transition is reentrant [77]. If our analogy is 
thoroughgoing, we must conclude that the low-temperature vortex state is somewhat more 
disordered than the vortex crystalline state just below the transition. The observed 
admixture of the 2nd order transition could be related to this reentrant crystallization. 

 The nature of the lower CP observed in Refs.[71,73] is less clear. The melting of a 
vortex crystal into a disentangled liquid breaks both gauge and translational symmetries. 
This breakdown is to occur simultaneously only at the 1st order transition line between the 
lower CP and  the upper CP. In the low-field limit the melting could be reentrant and 
proceed in two stages [9]. While the upper CP is clearly related to the pointlike disorder, 
the origin of lower CP could be in the divergence of the melting and decoupling lines 
below the lower CP. 

One more factor which may produce a change of nature of melting transition at 
moving along the melting line is the reorientation of the vortex lattice. This factor 
originates from the occurrence of chains in the structure of YBa2Cu3O7. It was observed by 
the small-angle neutron scattering that the hexagonal vortex lattice is aligned by its corner 
with the a axis at small fields (0.2 T), but with the b-axis at larger fields (above 3T)[78]. 
Unfortunately, this experiment was done only at low temperatures. It is not clear by now 
how the reorientation line is located in the (H,T)-diagram relative the melting line. 

 
 

X. CONCLUDING REMARKS 
 



 The nature of vortex phase transition in untwinned YBa2Cu3O7-δ single crystals was 
studied by systematically varying the oxygen deficiency δ. In magnetization measurements, 
depending on the δ and Happ, the 1st order and the 2nd order phase transitions were clearly 
distinguished by the transition width, the magnitudes of jumps, the hysteresis in the field-
cooled cooling-warming cycles and the vortex liquid undercooling. The observed inverted 
λ-peaks of magnetization are viewed as an admixture of a 2nd order transitory phenomenon 
at melting and freezing through the 1st order transition. These anomalies are observed in all 
the crystal orientations: H||a, H||b and H||c. The cooling rate dependence of the 
magnetization anomalies indicate that their origin is non-trivial. We suggest that their 
origin is linked with second order parameter (Φ-order). It was found that the order of 
transition changes abruptly from the 1st to the 2nd one near the optimal doping. This 
corresponds to moving the critical point in the (H,T)-phase diagram to H=0. The 1st order 
transition for T>TCP, is accompanied by tiny premelting peaks in M-H loops. The 2nd order 
transition, T<TCP, corresponds to broad fishtails and large values of Jc. The crossover from 
the 1st order to the 2nd order transition at the critical point is discrete. The T and H 
dependencies of the magnitude of the transitory magnetization anomalies were studied 
along the melting lines. We point out on the lacking an adequate mean-field theoretical 
approach to describe these dependencies in real crystals with disorder. In addition, the 3D 
XY scaling approach breaks down due to the occurrence of the CP in the vortex phase 
diagram. The slope of the melting line changes at the CP. Therefore, the whole melting line 
cannot be described as a single line in which Hc2 is suppressed by thermal fluctuations. It 
means that the nature of thermal fluctuation effect on the melting transition changes 
between the regions of the 1st order and the 2nd order transitions. The observed scaling 
within 3D XY model for the width of zero-field peak indicate an existence of a universal 
fluctuation mechanism underlying both the low-field irreversible behavior and the 1st order 
melting transition. Since a driving force of the scaling in the conventional XY model is a 
generation of vortex loops, the present results might imply that the vortex loops play an 
important role for both the mechanisms of melting and zero-field pinning in the high-
quality crystals. The effects of the experimental artifacts on the observed 1st and 2nd order 
transitions are also reviewed. For the 1st order transition, a flux-flow model is suggested 
explaining the “non-dipolar” shape of the signal. This model is in a qualitative agreement 
with the observed scan-length dependencies of the SQUID response. The magnetization in 
the crystals with a small impurity concentration (Tc=92.5 K) are compared with those in 
pure high-quality untwinned crystals (Tc=93.5 K). Various factors, which contribute in 
changing of the nature of melting transition along the melting line, are discussed. The 
magnetic flux density discontinuities in a vortex system with disorder are considered along 
with those in a polydispersed Bernal close packing. This analysis leads to a suggestion that 
the magnetization jumps should decrease with increasing field along the melting line. At 
approaching the critical point, such a feature was indeed observed for the first time in this 
work.  
 
 

XI REFERENCES 
 
[1] E. Brezin, D.R. Nelson and A. Thiaville, Phys. Rev. B31, 7124 (1985). 
[2] E. Zeldov, D. Majer, M. Konczykowski, V.B. Geshkenbein, V.M. Vinokur and H. 
Shtrikman, Nature 375 (1995) 373. 
[3] U. Welp, J.A. Fendrich, W.K. Kwok, G.W. Crabtree and B.W. Veal, Phys. Rev. Lett. 
76 (1996) 4809. 



[4] R. Liang, D.A. Bonn and W.N. Hardy, Phys. Rev. Lett. 76 (1996) 835. 
[5] A. Shilling, R.A. Fisher, N.E. Phillips, U. Welp, D. Dasgupta, W.K. Kwok & G.W. 
Crabtree, Nature 382 (1996) 792. 
[6] A.I.M. Rae, E.M. Forgan and R.A. Doyle, Physica C301 (1998) 301. 
[7] J. Hu, A.H. MacDonald, Phys. Rev. B56 (1997) 2788. 
[8] M.J.W. Dodgson, V.B. Geshkenbein, H. Nordborg and G. Blatter, Phys.Rev. Lett. 80 
(1998) 837. 
[9] S. Ryu and D. Stroud, Phys. Rev. B57 (1998) 14476. 
[10] D.S. Fisher, M.P.A. Fisher and D.A. Huse, Phys. Rev. B43, (1991) 130. 
[11] H. Safar, P.L. Gammel, D.A. Huse, D.J. Bishop, W.C. Lee, J. Giapintzakis and D.M. 
Ginsberg, Phys. Rev. Lett. 70, (1993) 3800. 
[12] D. Lopez, L. Krusin-Elbaum, H. Safar, E. Righi, F. de la Cruz, S. Grigera, C. Feild, 
W.K. Kwok, L. Paulius, G.W. Crabtree, Phys. Rev. Lett. 80, (1998) 1070. 
[13] A.I. Rykov, Physica (Amsterdam) C297 (1998) 133. 
[14] A.I. Rykov, S. Tajima, F.V. Kusmartsev, E.M. Forgan and Ch. Simon, Phys. Rev.B60 
(1999) September 1. 
[15] T.B. Lindemer, J.F. Hunley, J.E. Gates, A.L. Sutton, J. Brynestad, C.R. Hubbard, 
J.Am. Ceram. Soc. 72, (1989) 1775. 
[16] N.D. Antunes, L.M.A. Bettencourt and W.H. Zurek, Phys. Rev. Lett. 82 (1999) 2824. 
[17] Z. Tesanovic, Phys. Rev. B59 (1999) 6449. 
[18] C. Bäuerle, Yu.M. Bunkov, S.N. Fisher, H. Godfrin and G.R. Pickett, Nature, 382 
(1995) 332. 
[19] V.M.H. Ruutu, V.B. Eltsov, A.J. Gill, T.W.B. Kibble, M. Krusius, Yu.G. Makhlin, B. 
Plaçais, G.E. Volovik and Wen Xu, Nature, 382 (1996) 334. 
[20] N.D. Antunes and L.M.A. Bettencourt, Phys. Rev. Lett. 81 (1999) 3083. 
[21] C.P. Bean, Rev.Mod.Phys. 36(1964)31. 
[22] J.R. Cooper, J.W. Loram, J.D. Johnson, J. W. Hodby, C. Changkang, Phys. Rev. Lett. 
79, 1730 (1997). 
[23] T. Giamarchi and P. Le Doussal, Phys. Rev. B55 (1997)6577. 
[24] D. Ertaš and D.R. Nelson, Physica C.272 (1996) 79. 
[25] T. Nishizaki, T. Naito and N. Kobayashi, Phys. Rev. B58 (1998) 11169. 
[26] S.S. Banerjee, N.G. Patil, S. Saha, S. Ramakrishnan, A.K. Grover, S. Bhattacharya, G. 
Ravikumar, P.K. Mishra, T.V. Chandrasekhar Rao, V.C. Sahni, M.J. Higgins, E. 
Yamamoto, Y. Haga, M. Hedo, Y. Inada, Y. Onuki, Phys. Rev. B58 (1998) 995. 
[27] X.S. Ling, J.E. Berger, D.E. Prober, Phys. Rev. B57 (1998) R3249. 
[28] G. Ravikumar, T.V. Chanrasekhar Rao, P.K. Mishra, V.C. Sahni, S.S. Banerjee, A.K. 
Grover, S. Ramakrishnan, S. Bhattacharya, M.J. Higgins, E. Yamamoto, Y. Haga, M. 
Hedo, Y. Inada, Y. Onuki, Physica C298 (1998)122. 
[29] G. Ravikumar, T.V. Chanrasekhar Rao, P.K. Mishra, V.C. Sahni, Subir Saha, S.S. 
Banerjee, N.G. Patil, A.K. Grover, S. Ramakrishnan, S. Bhattacharya, M.J. Higgins, E. 
Yamamoto, Y. Haga, M. Hedo, Y. Inada, Y. Onuki, Physica C276 (1997)9. 
[30] W.K. Kwok, J.A. Fendrich, C.J. van der Beek, G.W. Crabtree, Phys.Rev.Lett. 73 
(1994) 2614. 
[31] M. Willemin, A. Shilling, H. Keller, C. Rossel, J. Hofer, U. Welp, W.K. Kwok, R.J. 
Olsson and G.W. Crabtree, Phys. Rev. Lett. 81 (1998) 4236. 
[32] D.E. Farrell, E. Johnston-Halperin, L. Klein, P. Fournier, A. Kapitulnik, E.M. Forgan, 
A.I.M.Rae, T.W. Li, M.L. Trawick, R. Sasik, J.C, Garland, Phys.Rev. B 53 (1996) 11807. 
[33] M. Willemin, C. Rossel, J. Hofer, H. Keller, A. Erb and E. Walker, Phys. Rev. B58 
(1998)R5940. 



[34] G. Blatter, M.V. Feigel’man, V.B. Geshkenbein, A.I. Larkin and V.M. Vinokur, Rev. 
Mod. Phys. 66 (1994) 1125. 
[35] X. Hu, S. Miyashita, M. Tachiki, Phys. Rev. B58 (1998)3438 
[36] A.E. Koshelev and H. Nordborg, Phys. Rev. B59 (1999)4358. 
[37] K. Deligiannis, P.A.J. de Groot, M. Oussena, S. Pinfold, R. Langan, R. Cagnon and L. 
Taillefer, Phys. Rev. Lett. 79 (1997) 2121. 
[38] H. Küpfer, Th. Wolf, C. Lessing, A.A. Zhukov, X. Lançon, R. Meier-Hirmer, W. 
Schauer, and H. Wühl, Phys. Rev. B58 (1998) 2886. 
[39] H. Zheng, M. Jiang, B.W. Veal, H. Claus, B. Obst, Physica C301 (1998) 147. 
[40] A. Junod, M. Roulin, J.-Y. Genoud, B. Revaz, A.Erb, and E. Walker, Physica 
(Amsterdam) 275C (1997) 245. 
[41] M.B. Salamon, J. Shi, N. Overend, M.A. Howson, Phys. Rev. B 47 (1993) 5520. 
[42] A.I. Rykov, W.J. Jang, H. Unoki, S. Tajima, in Advances in Superconductivity  VIII, 
edited by H. Hayakava and Y. Enomoto (Springer-Verlag, Tokyo, 1996) p. 341. 
[43] M.J.W. Dodgson, V.B. Geshkenbein, H. Nordborg and G. Blatter, Phys.Rev. B57 
(1998) 14498. 
[44]  M. A. Hubbard, M.B. Salamon, B.W. Veal. Physica (Amsterdam) 259C (1996) 309. 
[45]  S. Kamal, D.A. Bonn, N. Goldenfeld, P.J. Hirschfeld, R. Liang and W.H. Hardy, 
Phys. Rev. Lett. 73 (1994) 1845. 
[46] T. Sasagawa, K. Kishio, Y. Togawa, J. Shimoyama and K. Kiytazawa, Phys. Rev. Lett. 
80  (1998) 4297. 
[47] A. Shilling, R.A. Fisher, N.E. Phillips, U. Welp. W.K. Kwok, and G.W. Crabtree, 
Phys. Rev. B58 (1998) 11157. 
[48] X.G. Qui, V.V. Moshchalkov, Y. Bruynseraede, and J. Karpinski, Phys. Rev. B58 
(1998) 8826. 
[49] M. McElfresh, S. Li, R. Sager. Technical Advisory, Quantum Design (1996). 
[50] V.B. Geshkenbein, L.B. Ioffe, A.I. Larkin, Physica A(1993)278. 
[51] V.B. Geshkenbein, L.B. Ioffe, A.I. Larkin, Phys.Rev.B48(1993)9917. 
[52] A. Zieba, Rev. Sci. Instrum. 64(1993)3357. 
[53] C.N. Guy, J.O. Strom-Olsen, R.W. Cochrane, Phys. Rev.Lett. 42(1979)257. 
[54] C. N. Guy, W. Howarth, J.Phys. C11 (1978)1635. 
[55] C.N. Guy, J. Phys. F.12(1982)1453. 
[56] R. Kumar, A.K. Grover, P. Chaddah, C.K. Subramanian, V. Sankaranavaryanan, Sol. 
St. Comm. 76 (1990) 175. 
[57] A. K. Grover, R. Kumar, S.K. Malik, P. Chaddah, Sol. St. Comm. 77 (1991) 723. 
[58] M. Suenaga, D.O. Welch, R. Budhani, Supercond. Sci. Technol. 5 (1992) Suppl., 
pp.1-8. 
[59] A.A. Zhukov, V.V. Moshchalkov, V.D. Kuznetsov, V.V. Metlushko, G.T. Karapetrov, 
E.V. Pechen, and V.I. Timashev, Sov. Phys. JETP 73 (1991)334. 
[60] L.L. Miller, Rev. Sci. Instrum.67(1996) 3201. 
[61] S. Libbrecht, E. Osquiguil, and Y. Bruynseraede, Physica C 225 (1996) 337. 
[62] M. Suzuki, K. Miyahara, S. Kubo, S. Karimoto, K. Tsuru, and K. Tanabe, in 
Advances in Superconductivity VII, ed. by K. Yamafuji, T. Morishita(Springer-Verlag, 
Tokyo, 1995) pp.213-217. 
[63] A. Wienss, G. Jakob, P. Voss-de Haan, and H. Adrian. Physica C 280 (1997)158. 
[64] F.J. Blunt, A.R. Perry, A.M. Campbell, and R.S. Liu, Physica C 175 (1991)539. 
[65] S.B. Roy, A.K. Pradhan, P. Chaddah, Physica C271 (1996) 181. 
[66] A.I. Rykov  and S. Tajima,  In: Advances in Superconductivity IX, Eds. Murakami M. 
and Nakajima S. (Tokyo: Springer-Verlag, 1997) 503. 
[67] A.I. Rykov, S. Tajima and F.V. Kusmartsev, Int. J. Mod. Phys. 12 (1998) 3326. 



[68] G.A. Williams, Phys. Rev. Lett. 82 (1999)1201. 
[69] M. Friesen, P. Muzikar, Physica C302 (1998) 67. 
[70] C.M. Aegerter, S.T. Johnson, W.J. Nuttall, S.H. Lloyd, M.T. Wylie, M.P. Nutley, E.M. 
Forgan, R. Cubitt, S.L. Lee, D. McK. Paul, M. Yethiraj and H.A. Mook, Phys. Rev. B57 
(1998) 14511. 
[71] M. Roulin, A. Junod, A. Erb, and E. Walker, Phys. Rev. Lett. 80 (1998) 1722. 
[72] M. Roulin, A. Junod, and E. Walker, Physica C 296 (1998) 137. 
[73] B. Revaz, A. Junod, and A. Erb, Phys. Rev. B58 (1998) 11153. 
[74] R.M. Langan, S.N. Gordeev, P.A.G. de Groot, A.G.M. Jansen, R. Gagnon, and L. 
Taillefer, Phys. Rev. B58 (1998) 14548. 
[75] S.E. Phan, W.B. Russel, J.Z. Zhu and P.M. Chaikin, J. Chem. Phys. 108 (1998) 9789. 
[76] P. Bartlett, J. Chem. Phys. 107 (1997) 188. 
[77] P. Barlett, P.B. Warren, Phys. Rev. Lett. 82 (1999)1979. 
[78] S.T. Johnson, E.M. Forgan, S.H. Lloyd, C.M. Aegerter, S.L. Lee, R. Cubitt, P.G. 
Kealey, C. Ager, S. Tajima, A.I. Rykov, D. McK. Paul, Phys. Rev. Lett. 82(1998) 2792.  

 
 
 
 
 

 
 

 



  
 



  



 
 
 


